Profit = Selling price - Cost price
So here,
Sp=Rs295
&
Cp=Rs250
Profit = 295-250 = Rs 45
Profit = Selling Price - Cost Price
= 390 - 300 = 90 Profit % = (Profit / Cost Price) × 100
= (90 / 300) × 100 = 30%
Given:
Selling Price (SP) = Rs. 49755
Profit Percentage = 7%
Let Cost Price (CP) be x.
SP = CP + Profit
49755 = x + 7% of x
49755 = x + 0.07x
49755 = 1.07x
x = 49755/1.07
x = 46500
In this type of problem always loss occurs.
Use Formula,
% Final Loss = (%loss * %gain)/100 = (10 *10)/100 = 1% loss.
Net Graphic Change Method:
100 ==10% profit ==> 110 == 10% loss ==> 99.
100 become 99, so 1% of loss occurs.
⇒I assume he charged both parties 1% and not a 1 % split between both.
⇒ Rs 600000 sale price
⇒ commission - 6000
⇒ the buyer would pay Rs 600000 plus added commission Rs 6000 = Rs 606000
⇒ The seller would receive Rs 600k less Rs 6000 = Rs 594 000
*****
ND04-12-2022
ND23-6-2023
C.P. of 1 toy = 375/12 = Rs. 31.25
S.P of 1 toy = Rs. 33
Profit = 1.75/31.25 * 100 = 28/5 = 5.6%
C.P = 2 Profit = 10%
S.P=?
S.P = C.P (100 +P%)/ 100
S.P = 2 (100 + 10)/100
S.P = 27 (110) /100
S.P = 29.7
Profit = 20% of Rs. 180 = 20/100 × 180 = 36
Selling Price = Cost Price + Profit = 180 + 36 = Rs. 216
We are given two equations:
Let:
Cost of one apple = x
Cost of one orange = y
From the problem:
4x+2y=304x + 2y = 30
x+3y=15
Step 1: Solve the system of equations
Equation (1): 4x+2y=304x + 2y = 30 Divide the whole equation by 2: → 2x+y=152x + y = 15→ (3)
Equation (2): x + 3y = 15x+3y=15 → (2)
From (3): y = 15 - 2xy=15−2x → (4)
Substitute (4) into (2): x+3(15−2x)=15x + 3(15 - 2x) = 15 x+45−6x=15x + 45 - 6x = 15 −5x+45=15 −5x=15−45=−30 x=−30−5=6