lim x→0 sinax/sinbx =?
lim x→0 sinax/sinbx =?
Explanation
limₓ→0 (sin(ax) / sin(bx))
Divide the numerator and the denominator by x:
= limₓ→0 [(sin(ax)/x) ÷ (sin(bx)/x)]
= (a/b) × limₓ→0 [sin(ax)/(ax)] ÷ [sin(bx)/(bx)]
As x → 0, sin(kx)/(kx) → 1, so:
Answer: a / b