The general solution of the differential equation d^2y/dx^2 - 4 dy/dx + 4y = 0 is?

The general solution of the differential equation d^2y/dx^2 - 4 dy/dx + 4y = 0 is?

Explanation

The given differential equation is a second-order linear homogeneous equation with constant coefficients. The characteristic equation is:

r^2 - 4r + 4 = 0

which has a repeated root r = 2. Therefore, the general solution is:

y = (c1 + c2x)e^2x

where c1 and c2 are arbitrary constants.