To find the value of the expression (1+x)(1+x2)(1+x4)(1+x8)(1−x),

To find the value of the expression (1+x)(1+x2)(1+x4)(1+x8)(1−x),

Explanation
Given:
(1+x)(1+x2)(1+x4)(1+x8)(1−x),

(1+x)(1+x2)(1+x4)(1+x8)(1x)

This is a well-known identity in algebra that builds up as a geometric progression product:

Identity:
(1x)(1+x)(1+x^2)(1+x^4)(1+x^8)=1x^16

(1x)(1+x)(1+x2)(1+x4)(1+x8)=1x16

So,

(1+x)(1+x^2)(1+x^4)(1+x^8)(1x)=1x^16

(1+x)(1+x2)(1+x4)(1+x8)(1x)=1x16