(2x^3 - 5x^2y + 5xy^2 - 3y^3) ÷ (2x - 3y) =?

(2x^3 - 5x^2y + 5xy^2 - 3y^3) ÷ (2x - 3y) =?

Explanation

To divide (2x^3 - 5x^2y + 5xy^2 - 3y^3) by (2x - 3y), let's attempt polynomial long division or factorization if possible.

Given the form of the dividend and divisor, let's try to factor or directly apply division:

(2x^3 - 5x^2y + 5xy^2 - 3y^3) ÷ (2x - 3y)

Upon inspection or performing polynomial division, one notices:

2x^3 - 5x^2y + 5xy^2 - 3y^3 can be factored or divided as follows:

2x^3 - 3x^2y - 2x^2y + 3xy^2 + 2xy^2 - 3y^3

Which can be rearranged and factored:

x^2(2x - 3y) - xy(2x - 3y) + y^2(2x - 3y)

= (2x - 3y)(x^2 - xy + y^2)

Thus, (2x^3 - 5x^2y + 5xy^2 - 3y^3) ÷ (2x - 3y) = x^2 - xy + y^2