∫ lnxdx = - - - - - -?

∫ lnxdx = - - - - - -?

Explanation

To find ∫ln(x)dx, we use integration by parts:

Let u = ln(x) and dv = dx

Then du = 1/x dx and v = x

∫ln(x)dx = uv - ∫v du

= x_ln(x) - ∫x * 1/x dx

= x_ln(x) - ∫1 dx

= x*ln(x) - x + C

The answer is xlnx – x + c.