What is the area of a section with a radius of 4.2 cm and a central angle of 60°, if π is approximated as 22/7?

What is the area of a section with a radius of 4.2 cm and a central angle of 60°, if π is approximated as 22/7?

4.2 سینٹی میٹر کے رداس اور 60° کے مرکزی زاویہ والے حصے کا رقبہ کیا ہے، اگر π کا تخمینہ 22/7 ہے؟
Explanation

To find the area of a section with a central angle of 60° and a radius of 4.2 cm, we can use the formula for the area of a sector of a circle:

Area of sector = (θ/360) * π * r^2

Where:

θ is the central angle in degrees

π is approximately 22/7

r is the radius of the circle

Given:

θ = 60°

π ≈ 22/7

r = 4.2 cm

Substituting the values into the formula:

Area of sector = (60/360) * (22/7) * (4.2)^2

= (1/6) * (22/7) * 17.64

≈ (1/6) * 22 * 2.52

≈ (11/3) * 2.52

≈ 9.24 cm²


Therefore, the area of the sector is approximately 9.24 square centimeters.