Explanation
What is the value of the integral:
∫e^x2+lnx dx
Step 1: Simplify the integrand
Recall:
e^a+b=e^a⋅e^b
So,
e^x^2+lnx=e^x^2⋅e^lnx=x⋅e^x^2
Step 2: The integral becomes:
∫x⋅e^x^2 dx
Now use substitution:
Let u=x^2⇒du=2xdx⇒1/2du=xdx
So,
∫x⋅e^x^2 dx
=1/2∫e^u du
=1/2e^u+C
=1/2ex^2 +C